69 research outputs found

    Position-Based Packet Forwarding for Vehicular Ad-Hoc Networks

    Full text link
    Mobile Ad-Hoc Networks, or MANETs, are data communication networks between (potentially) mobile computer systems equipped with wireless communication devices and — in their purest form — in complete absence of communication infrastructure. Usage scenarios for these systems include communication during disaster recovery or battlefield communications. One of the great research challenges concerning MANETs is the Packet Forwarding Problem, i.e., the question to which neighbor node a data packet should be handed over to reach non-neighboring nodes. While this problem has been previously solved by the adaption of classic routing algorithms from wired networks, the availability of GPS enables to include information about the geographic position of nodes into the routing decision, by selecting forwarders that are geographically closest to the destination. While these algorithms have been shown to improve communication performance in networks with a high degree of node mobility, they require (a) a beaconing service that allows every node to build a table of its neighbors and (b) a so-called Location Service that allows to acquire the current position of non-neighboring nodes in the network. In this thesis, we propose Contention-Based Forwarding (or CBF), a greedy routing heuristic that is no longer in need of a beaconing service. Moreover, a forwarding node running CBF does not at all select the next forwarder explicitly but broadcasts the packet containing its own position and the position of the destination. The selection of the forwarding is now done in a contention period, where every possible forwarder, i.e., every receiver of the packet, considers its own suitability to forward by calculating the geographical progress for the packet if forwarded by itself. Then it waits for a time reciprocal to this suitability before simply retransmitting. If the retransmission of a packet is overheard, the own postponed retransmission process is canceled. In this thesis, we demonstrate that CBF outperforms beacon and position-based routing by delivering packets with constant overhead, almost ignorant of mobility. Also, we introduce two strategies to cope with the problem of packet duplication. A problem left open by greedy routing heuristics is routing in the presence of local optima, or voids. Voids are node placement situations, where — in spite of an existing route — no neighboring node is geographically closer to the destination than the current forwarder. In these situations, greedy forwarding fails and standard graph-based recovery well known from classical Position-Based Forwarding cannot be applied due to the lack of the beacon-based construction of neighbor tables. As a solution, we propagate Contention-Based Distance Vector Routing, a contention-based adaption of AODV that acquires topology information in the area of the void and does contention on the topological distance to the forwarder. Besides the forwarding algorithms, we extend position-based routing by two location services. The first, the Reactive Location Service or RLS is simple, purely on-demand and very robust to mobility, the second Hierarchical Location Service, is more complex but outperforms RLS in scalability. The second big column in this thesis is ad-hoc multi-hop communication in the context of Vehicular Ad-Hoc Networks , or VANET, i.e., networks where the communication system is carried by vehicles. These systems very elegantly fit into the propositions and requirements for our more general routing approaches since they have (a) easy access to position information an (b) "suffer" from high mobility. For VANETs, we separate the routing problem into highway and city scenarios and study various routing algorithms in both. In the end, we advocate the usage of position-based routing in both scenarios; moreover, the contention-based approaches are most promising. While a lot of ad-hoc research has been deemed to be theoretical, we have also built a multi-car communication system. For this system, we provided the network and system architecture and provided the communication software. In this thesis, we will describe these efforts as a proof-of-concept and provide measurement results

    A Reactive Location Service for Mobile Ad Hoc Networks

    Full text link
    We present and analyze a reactive location service RLS for mobile ad hoc networks. RLS provides a mobile node in a wireless ad-hoc network with the means to inquire the current geographical position of another node on-demand and can be used as a building block for location-based routing. We provide a comparison of RLS to an ideal omniscient location service as well as to the complex Grid Location Service (GLS). In addition, we compare the performance of greedy location-based routing in combination with RLS to the performance of a non-location-based ad hoc routing approach, namely Dynamic Source Routing (DSR). DSR was chosen for the comparison since RLS can be considered an adaptation of DSR\'s route discovery mechanisms to the location-based domain. We also introduce and study possible optimizations for RLS, in particular caching, random re-broadcast jitter, and re-broadcast suppression. The quantitative results of our NS-2 simulation study show a very good perform! ance of RLS combined with greedy routing, outperforming GLS and DSR for scenarios with high mobility and high node density

    Unicast Ad-Hoc Routing in Vehicular City Scenarios

    Full text link
    Within Vehicular Ad-Hoc Networking (VANET), i.e., networking between radio-equipped vehicles, unicast packet forwarding can be separated into the one-dimensional highway case and the two-dimensional city case. In this report, we survey the routing methods developed in the FleetNet and Network-on-Wheels projects plus a novel combination of two wellknown methods called PBR-DV or Position-Based Routing with Distance-Vector recovery. On the quest for a city-capable candidate routing algorithm as a possible standard, we discuss the usability and performance of the protocols in city scenarios. Finally, we conclude proposing PBR-DV as a candidate protocol for small-hop-count unicast VANET scenarios

    Position-Based Multicast Routing for Mobile Ad-Hoc Networks

    Full text link
    In this paper we present Position-Based Multicast (PBM), a multicast routing algorithm for mobile ad-hoc networks which does neither require the maintenance of a distribution structure (e.g., a tree or a mesh) nor resorts to flooding of data packets. Instead a forwarding node uses information about the positions of the destinations and its own neighbors to determine the next hops that the packet should be forwarded to and is thus very well suited for highly dynamic networks. PBM is a generalization of existing position-based unicast routing protocols such as face-2 or GPSR. The key contributions of PBM are rules for the splitting of multicast packets and a repair strategy for situations where there exists no direct neighbor that makes progress toward one or more destinations. The characteristics of PBM are evaluated in detail by means of simulation

    Beaconless Position-Based Routing for Mobile Ad-Hoc Networks

    Full text link
    Existing position-based unicast routing algorithms, where packets are forwarded in the geographic direction of the destination, require that the forwarding node knows the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages each node sends out periodically. The transmission of beacons and the storage of neighbor information consumes resources. Due to mobility, collected neighbor information can quickly get outdated which in turn can lead to packet drops. In this paper, we propose a mechanism to perform position-based forwarding without the help of beacons or the maintenance of neighbor tables. In our contention-based forwarding scheme(CBF) the next hop is selected through a distributed contention process using biased timers. To avoid packet duplication, the first node that is selected suppresses the selection of further nodes. We propose three suppression strategies which vary with respect to forwarding efficiency and suppression characteristics. We analyze the behavior of CBF with all three suppression strategies and compare it to an existing greedy routing approach by means of simulation with ns-2. Our results demonstrate that CBF is a promising strategy for position-based routing

    A Comparison of Routing Strategies for Vehicular Ad Hoc Networks

    Full text link
    On this paper we investigate the use of ad-hoc routing algorithms for the exchange of data between vehicles. There are two main aspects that are of interest in this context: the specific characteristics of ad-hoc networks formed by vehicles and the applicability of existing ad-hoc routing schemes to networks that display these characteristics. In order to address both aspects we generate realistic vehicular movement patterns of highway traffic scenarios using a well validated traffic simulation tool. Based on these patterns we show that the characteristics of vehicular ad-hoc networks are quite different from the frequently used random waypoint model. We then proceed to evaluate the performance of a reactive ad-hoc routing protocol (DSR) and of a position-based approach (greedy forwarding as done in GPSR) in combination with a simple reactive location service. Our analysis suggests that for vehicular networks where communication spans more than 2 or 3 hops position-! based ad-hoc routing has significant advantages over reactive non-position-based approaches both in the number of successfully delivered packets and in routing overhead

    A Hierarchical Approach to Position-Based Multicast for Mobile Ad-hoc Networks

    Full text link
    In this paper we present Scalable Position-Based Multicast (SPBM), a multicast routing protocol for ad-hoc networks. SPBM uses the geographic position of nodes to provide a highly scalable group membership scheme and to forward data packets in a way that is very robust to changes in the topology of the network. SPBM bases the forwarding decision on whether there are group members located in a given direction or not, allowing for a hierarchical aggregation of membership information: the further away a region is from an intermediate node the higher the level of aggregation should be for this region. Because of aggregation, the overhead for group membership management scales logarithmically with the number of nodes and is independent of the number of multicast senders for a given multicast group. Furthermore, we show that group management overhead is bounded by a constant if the frequency of membership updates is scaled down with the aggregation level. This scaling of the update frequency is reasonable since the higher the level of aggregation the lower the number of membership changes for the aggregate. The performance of SPBM is investigated by means of simulation, including a comparison with ODMRP, and through mathematical analysis. We also describe an open source kernel implementation of SPBM that has been successfully deployed on hand-held computers

    Huginn: A 3D Visualizer for Wireless ns-2 Traces

    Get PDF
    Discrete-event network simulation is a major tool for the research and development of mobile ad-hoc networks (MANETs). These simulations are used for debugging, teaching, understanding, and performance-evaluating MANET protocols. For the first three tasks, visualization of the processes occurring in the simulated network is crucial for verification and credibility of the generated results. Working with the popular network simulator ns-2, we have not yet found a visualization toolkit capable of reading native ns-2 trace files and providing means to change the evaluated parameters without changing the visualization software. Thus, we developed Huginn, a software providing an intuitive way to visualize simulation properties and to determine how they should be displayed without the need of programming. In addition, Huginn has a 3D interface allowing a high exploitation of the (human) user’s perceptive system. It helps to handle the significant cognitive load associated with the mental reconstruction of simulated network processes. Besides presenting the software interface and architecture, we describe algorithmic solutions that might be of a more general interest for similar problems

    Scalable position-based multicast for mobile ad-hoc networks

    Get PDF
    In this paper we present Scalable Position-Based Multicast (SPBM), a multicast routing protocol for ad-hoc networks. SPBM uses the geographic position of nodes to provide a highly scalable group membership scheme and to forward data packets with a very low overhead. SPBM bases its multicast forwarding decision on whether there are group members located in a given direction or not, allowing for a hierarchical aggregation of group members contained in geographic regions: the larger the distance between a region containing group members and an intermediate node, the larger can this region be without having a significant impact on the accuracy of the direction from the intermediate node to that region. Because of aggregation, the overhead for group membership management is bounded by a small constant while it is independent of the number of multicast senders for a given multicast group. We investigate the performance of SPBM by means of simulation, including a comparison with ODMRP
    • …
    corecore